We outline for the first time, the development and use of the Open Babel project, a full-featured open chemical toolbox, designed to "speak" the many different representations of chemical data. It allows anyone to search, convert, analyze, or store data from molecular modeling, chemistry, solid-state materials, biochemistry, or related areas. It provides both ready-to-use programs as well as a complete, extensible programmer's toolkit for developing cheminformatics software. It can handle reading, writing, and interconverting over 110 chemical file formats, supports filtering and searching molecule files using Daylight SMARTS pattern matching [7] and other methods, and provides extensible fingerprinting and molecular mechanics frameworks. We will discuss the frameworks for file format interconversion, fingerprinting, fast molecular searching, bond perception and atom typing, canonical numbering of molecular structures and fragments, molecular mechanics force fields, and the extensible interfaces provided by the software library to enable further chemistry software development.
Open Babel has its origin in a version of OELib released as open-source software by OpenEye Scientific under the GPL (GNU Public License). In 2001, OpenEye decided to rewrite OELib in-house as the proprietary OEChem library, so the existing code from OELib was spun out into the new Open Babel project. Since 2001, Open Babel has been developed and substantially extended as an international collaborative project using an open-source development model [8]. It has over 160,000 downloads, over 400 citations [9], is used by over 40 software projects [10], and is freely available from the Open Babel website [11].
download software cw brute force 0 5 37
DOWNLOAD: https://urllio.com/2vHip3
The utility of software libraries such as Open Babel depends on the ability of the design to be extended over time to support new functionality. To facilitate this, Open Babel implements a plugin interface for file formats, fingerprints, charge models, descriptors, "operators" and molecular mechanics force fields. This ensures a clean separation of the implementation of a particular plugin from the core Open Babel library code, and makes it easy for a new plugin (e.g. a new file format) to be contributed; all that is needed is a single C++ file and a trivial change to one of the build files. The operator plugins provide a very general mechanism for operating on a molecule (e.g. energy minimization or 3D coordinate generation) or on a list of molecules (e.g. filtering or sorting) after reading but before writing.
Ghiringhelli et al. described an extended methodology for feature selection in materials science based on LASSO and compressed sensing.162 Starting with a number of primary features, the number of descriptors is exponentially increased by applying various algebraic/functional operators (such as the absolute value of differences, exponentiation, etc.) and constructing different combinations of the primary features. Necessarily, physical notions like the units of the primary features constrain the number of combinations. LASSO is then used to reduce the number of features to a point where a brute force combination approach to find the lowest error is possible. This approach is chosen in order to circumvent the problems pure LASSO faces when treating strongly correlated variables and to allow for non-linear models. 2ff7e9595c
Comments